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ABSTRACT

The acceleration of projectiles through the use of electromagnetic forces
(Railguns) has many advantages over conventional methods. Foremost are the higher
velocities which can be achieved and the reduction in firing platform sensitivity to hits.
Projectile velocities on the order of 3-4 kilometers per second allow the use of "kinetic
energy kill" projectiles which are effectively inert munitions. Additionally, by using
purely electromotive force for the acceleration, the need for explosive propellents is

elliminated.

A one meter Electromagnetic Railgun was designed and constructed to serve as
a test bed for research into altemnative armature materials, rail/armature plasma
effects, and current pulse forming techniques. A modular approach was used to allow
independent changes in power supply, pulse forming network, bore configuration, and

gun augmentation.
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. INTRODUCTION

A. HISTORY

Electro-Magnetic (EM) Accelerators have received varying levels of interest for
many years, and dozens of large and small scale prototypes have been constructed
around the world. In the United States, the first formal studies of their application in
ordnance occurred in 1977. That year, Dr. Harry Fair, then the head of the Propulsion
Technology Branch of the Army Research and Development Command in Dovem,
N.J., inquired whether any of the EM Accelerators being developed at MIT might have
military uses. This led to the formation of an interagency steering committee and

advisory panel to coordinate efforts between DOD and other centers of expertise [1].

A wide range of proposals and prototypes sprang up in most of the national and
military labs during the heyday of the Strategic Defense Initiative Organization (SDIO)
in the mid to late 1980’3. These concepts ranged, in scope, from ground based anti-
armor weapons to ballistic missile interceptors fired from platforms in earth orbit. With
the end of SDIO, the funding for many of these programs ended. At present, the
majority of the surviving work on railguns in this country is concentrated at the Center

for Electromechanics at the University of Texas at Austin (CEM UT).

An example of the ongoing work at CEM UT is the construction and testing of a
skid mounted, compulsator-driven 30-mm rapid-fire railgun system. This compact,
lightweight test bed is to be capable of firing three, five-round salvos of 185-gram
payloads (95 gram sub projectile mass) to 1.85 km/s at a firing rate of 5 hz. This
system is to be the ‘prototype for a weapon which is envisioned for use on the
Amphibious Assault Vehicle (AAV) and is being jointly funded by the United States
Marine Co'rb, and the U.S. Army ARDEC Close Combat Armaments Center [2].



B. THE CASE FOR ELECTROMAGNETIC GUNS
1. Velocity Limitations of Conventional Guns

The rationale for increasing the velocity of projectiles is twofold. The first deals
with the ability to increase weapons range through higher velocities while at the same
time reducing the time of flight of the projectile over a fixed range. Both of these
enhance the safety of the user. By extending the lethal range of the weapon the user
is removed from or placed near the limit of the enemy weapons’ range and by having
a higher velocity projectile, he has a higher probability of prevailing in a "quick draw"

situation.

The second rationale for higher velocities involves the relationship between

velocity and kinetic energy of a projectile, KE. = %mvz, which shows that a doubling

of a projectiles mass only doubles its kinetic energy whereas doubling its velocity
increases its kinetic energy by a factor of four. This can be exploited by using
extremely high velocity projectiles which have the capability of achieving "kinetic

energy kills" thereby eliminating or reducing the need for explosive projectiles.

Conventional propellent guns, including electrothermal and chemical guns,
accelerate projectiles by generating large pressures behind the projectile inside the
barrel. Higher velocities are achieved by either increasing the pressure in the barrel or
extending the time over which the pressure is applied. The first method requires
building stronger (heavier) barrels with a practical limit being reached as the weight of
the gun exceeds that which can be used in a tactical environment. The second
method involves extending the length of the barrel, thereby extending the time over
which a given pressure is applied. This approach has received a great deal of
attention of late with "Super Guns", but once again, except for strategic applications

the length of these barrels rapidly exceeds that which can be reasonably fielded.




2. Sensitivity of Conventional Munitions/Propellants

The survivability of a weapon platform and its crew in battle has always been a
concern and in recent history, a major concem. With the introduction in this country of
legislation requiring "Live Fire Testing" of all developmental weapon systems and
platforms, it has become an almost overriding concemn. Paramount in the
determination of the survivability of a system or platform is the analysis of how the
volatile components will respond to the effects of a weapons hit. The surest and
simplest way of reducing these ponflagration and or sympathetic detonation problems

is to reduce the amount and types of volatile materials involved.

An EM weapon’s ability to achieve target kills using completely inert projectiles
eliminates the problem of protecting explosive projectiles from sympathetic detonation
during a hit or from heat produced by conflagration following a hit. A similar reduction
in vulnerability is obtained through the elimination of explosive propellants. EM
weapons require only electrical current to operate. This can be generated in
numerous ways, none of which require the introduction of any new volatile materials.
In effect, fielding an EM weapon or adding one to a weapon platform is equivalent,

from a vulnerability perspective, to adding additional inert material.

3. Where is the EM Gun a Good Choice

While projectile velocity is a high priority in most ordnance épplications, the
benefits of increasing it in some areas may be secondary to such performance
characteristics as rate of fire, system weight, simplicity of maintenance, mean time
between failure, and environmental operating envelope, to name but a few. The
design and operating characteristics of EM guns make them an excellent choice where
specifications call for high projectile velocity (armor piercing/kinetic energy kill), low
system vulnerability, low firing signature, extended projectile shelf life, selectable
lethality ("Dial a Velocity"), ease of projectile storage/handling/resupply, and minimal

environmental impact.




The main battery of the M1A2 Abrams tank is an excellent example of an
application for which an EM gun is ideally suited. In their main role as anti-armor
weapons, tank guns have grown in length over time in an attempt to achieve ever
higher projectile velocities in order to overcome increasingly sophisticated armors.
Current 120 mm rounds such as the M829A1 which has a DU (depleted uranium)
penetrator were very successful against Soviet built T-72 tanks during the Guif War.
However, to achieve their armor penetrating characteristics, these sub caliber
penetrator rounds need to be accelerated to a muzzle velocity approaching 1670 m/s.
This is accomplished using propellent charges which are at the very limit of the gun’s
design, resulting in severe bore erosion and significant reduction in barrel service life.
EM guns can accelerate penetrating rod type projectiles to muzzle velocities of 2000 -

3000 m/s with a comparable barrel length.

An equally attractive characteristic of the EM gun is the absence of projectile
propellants. C_)f the approximately 50 rounds carried by the M1A2, 80% are stowed in
the turret and constitute the greatest vulnerability concem of the tank. By utilizing EM
gun technology this concem is completely removed. The elimination of the propellent
charges also frees up nearly 75% of the space previously used for ammunition storage
which could then be utilized for the EM guns energy storage machinery and additional
projectiles. Another benefit of the higher velocities attained by the EM gun is the
ability to obtain superior target damage results with lighter penetrators thereby
eliminating the need for DU penetrators and their associated hazards to personnel and

the environment.

From a naval perspective, the employment of an EM gun in the role currently
filled by the Mk-45 5"/54 would greatly increase the ranges at which Naval Gunfire
Support (NGFS) could be conducted. At the same time, the need for powder
magazines and their associated sprinkler systems could be eliminated. EM technology
could also be employed in either manned or automated small caliber (25-35 mm)

weapons mounted on deck for use in defense against small boat or light aircraft




aftack. The extremely high velocity and subsequent flat trajectory of an EM gun would

enable it to be used in a nearly "point and shoot' mode for short range engagements.

Another area in which an EM guns unique operating characteristics could be
exploited is in OOW (Operations Other Than War). By the nature in which an EM gun
accelerates its projectiles through electrical action it is possible to "detune" it to
achieve a broad range of selectable velocities below that of its maximum capability.
As such, a weapon could be designed with the capability to fire a generic projectile
such as a rubber bullet over a wide range of velocities from nonlethal, to armor
piercing, by simply adjusting a dial on the weapon. This type of flexibility from a single
weapon and projectile combination could generate a true paradigm shift in the way we

envision not only the design and use of firearms but their definition as well.







Il. EM GUN THEORY

A. BASIC OPERATION

The force generated in a Railgun is the result of the Lorentz Eorce created by the
flow of electrical current through the armature interacting with the magnetic field

generated by the current flowing through the parallel rails of the gun:
F=ixB, @.1)

where i is the current flowing through the armature, T is the distance between the rails,

and B is the magnetic field generated between the rails as shown in Figure 1.
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Figure 1. Magnetic field generated by current flow in an EM gun.

A simple circuit diagram for a Rail Gun and its associated power supply is shown

in Figure 2.
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Figure 2. A simple Rail Gun circuit.

In this initial analysis, the power supply is treated as essentially a black box with
a fixed output impedance of: Z, = R, + joL,. The rail gun itself is characterized by a

linear resistance gradiént, R’, and a constant inductance gradient, L.

By treating the gun as a component in this electrical circuit, the Lorentz force
generated behind the armature has been shown to be:

_‘l_*ﬁ*lﬂ

Frg =
RG 2 dx ’

2.2)

where i is the current in the ‘rails [3]. For a specific Railgun the inductance can be

measured and equation (2.2) becomes:

LR (2.3)

1
Frg = —
RG 2

where L’ is the inductance per meter of rail pair.




With equation (2.3) we can now calculate the acceleration for a given Railgun /

projectile combination:

a=Ltl (2.4)

where i is the instantaneous current in the gun. Now if we know the current pulse
shape, the velocity of the projectile can be determined by integration:

ot
L' ¢

V=u+—|idt, 2.
2mjo/ t (2.5)

where u is the injection velocity of the projectile into the gun or the initial velocity of the
projectile prior to initiating the current pulse. By assuming that the initial projectile

displacement is zero, the total displacement is:
t % t t 5
X = |vdt =ut + — M’m@wﬂ. (2.6)
] 2m b |

Previous work [3] has shown that an EM gun’s behavior can be analyzed by

defining the electrical action G as:
t
G = [/, (2.7)
0
and a parameter H, which is the time integral of G:

t
H=[G dt (2.8)
0

Now equation (2.5) can be written as:

L'G
= —_ 2.
VU (2.9)
and equation (2.6) can be written as:
_ L'H
X =ut+ om (2.10)




G is a parameter which defines the energy dissipated per unit electrical resistance in
units of MJ/Q. From this, it can be shown that there is a direct connection between
the acceleration of the railgun projectile and the energy which is resistively dissipated
in the circuit during the current pulse. As an example, the resistive energy loss in A,,

defined as W,, is given by

t
2R, m(v-
lM:&ij=&G=—17;JQ. 2.11)

[0]

This example demonstrates two things. First, it can be seen that the energy loss is
not proportional to the kinetic energy of the projectile as might be expected, but rather,
to the projectiie momentum. Secondly, the energy demand can be seen as being
inversely proportional to the inductance gradient, L’ of the gun. This second fact
highlights the importance of trying to maximize the inductance gradient while designing

the railgun barrel.

B. CURRENT PULSE SHAPE REQUIREMENTS

To obtain exact solutions for equations (2.9) and (2.10), the shape of the current
pulse seen by the gun must be specified. In ref. [3], Putley analyses the simple

trapezoidal current waveform of Figure 3.

In this simple model of a current waveform, the current rises linearly from zero
over a time 1 to a constant value of |, where it is held for a time T. The current then
falls back to zero once again in a time 1. His previous work [4] showed that with a
linear current waveform, where the current varies from i, to i; over a time t, that G

and H are given by

G=%¢Q+QF—MJ 2.12)
and
1.0 1.. 1.
H = t2 {Zloz + Elolf + Té—lfz} (213)

10
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Current

Time

Figure 3. ldealized current waveform.

Using these equations the resistive loss in the railgun’s barrel was shown to be:
W, =R 1 —i?+ — 1; — i + —1—/2 + —H—[(i i) =iy if(i2 + ifz)] . (2.14)
Y7 6° 12°|  168ml"° oo

If we now apply these results to the trapezoidal waveform of Figure 3, it is
possible to calculate the performance which would be obtained. For instance if we

define the projectile travel as X and the muzzle velocity as v,,, then

X=u@t+T)+ —— (412 + 81T + 37?) (2.15)
and
vocus LBl T (2.16)
m m|3 2/

where | is the peak current generated during the pulse. These two equations now

11



define the pérformance of a given railgun assuming a simple, symmetric, trapezoidal
current pulse. This approximation is very useful for exploring design options for

railguns, given a specification for projectile mass and muzzle velocity.
By the nature of the extremely high velocities achieved with EM guns in relatively

short barrels, the acceleration and jerk, J=%f;—, experienced by the projectile can be

extreme. This needs to be taken into consideration when designing the type of
projectile to be used. If however, the projectile type and construction is a given
spécification, the current pulse can be modified to accommodate it. Equation (2.4) can
be used to calculate the peak projectile acceleration, &, and then the mean

acceleration, 7 is,

g - 2.17)
T 2X’ .

Now the peak to mean acceleration ratio, o, is simply

o=2, (2.18)
a

In a similar manner we can obtain a value for the instantaneous value of the jerk
experienced by the projectile. Again, from equation (2.4),

L'i di
J === 2.19

m at ( )
and now the maximum value of jerk, J, experienced during a trapezoidal pulse is

given by

7’ ’ 2
J = %711- . (2.20)

For the simple trapezoidal pulse shape analyzed here, the rate of change of current is
constant during the rise time. Since the jerk is proportional to the current, this gives a
slightly higher value of the jerk than might be obtained from a more realistic pulse

shape. For example, a sinusoidal current pulse with the same values of peak current

12




and current rise time would give a value of peak jerk of about 70 % of the trapezoidal

pulse’s.

With this set of equations, it is now possible to get a rough estimate of the
performance obtainable with a given set of specifications. This enables us to do trade
off studies such as barrel length required versus muzzle velocity and projectile mass.
They also give us insight into the types of power supplies which might be used since
they will have a major role in determining the shape and duration of the current pulse

that can be generated and consequently in the performance of the gun.

C. POWER SUPPLIES
1. Capacitors

In spite of their relatively low energy density in comparison to compulsators and
homopolar generators, capacitors are the power supply of choice in the laboratory
environment. Their relatively low cost, simplicity, and reliability also make them
competitive in military applications where size and weight considerations are not
critical. Aside from their weight, the principle drawback with capacitor power supplies
is the requirement for pulse forming networks (PFN’s) and transformers. The PFN
supplies high current and pulse shaping, and the transformer lowers the voltage and

provides a matched load to maximize power transfer.

As an example, consider an EM gun designed to be driven by a 2 kV, 1 MA
pulse of 500 pusec duration. To generate this pulse wé could use ten, 10 kV, 50 kJ
capacitors, parallel connected in pairs to form five modules, each with a capacitance of
2 mF. These five stages can then be connected to form a type E PFN [5], as shown in

Figure 4, with a characteristic impedance, Z,, given by

Z, =

Veharge _ \/ Liotal (2.21)

2loyt Cootal

Here, Veparge is the total potential on the capacitor bank, I, is the current obtained

13




during the discharge, L, is the total inductance of the inductors used between the
capacitors, and Cyy, is the total capacitance of the bank. Using Z,, the duration of

the current pulse, buise » IS given by
bouise = 2Co1a1 20 (2.22)

With the fixed charge voltage of 10 kV and 500 s current output of 200 kA, equations
(2.21) and (2.22) give an impedance of 0.025 O and a total inductance of 6.25 nH. As
shown in figure 4, the total inductance is obtained by placing a 1.56 pH inductor
between each of the five dapacitor modules. This 10 kV, 200 kA, 500 us pulse which
has been generated can now be stepped up to the 2 kV, 1 MA, 500 us pulse required

in this example by using a 5:1 current pulse transformer [6].

1.56uH 1.56uH 1.56uH 1.56uH
A0 SR o o W,

ﬁ/
SW1 T1

_L J_ ‘L _L _L 10KY 2KV
2000uF 2000uF 2000uF 2000uF 2000uF 200ka 3¢ 1000kA
T 10KU T 10KV T 10KV T 10KU T 10KU
. . . ' 5:1

Figure 4. Circuit diagram of power supply.

If the PFN had been used directly to supply the total 1 MA, the characteristic
impedance would have changed and the pulse length with it. The power transfer from
the PFN to the gun load is maximized due to the impedance matching of the low
impedance load to the primary and the current is increased without shortening the
pulse length. This combination of impedance matching the load (EM gun) to the

power supply using a PFN and stepping up the current to the load using a transformer,

14




optimizes the characteristic operating parameters of high energy density capacitors

without compromising the current pulse requirements of the EM gun.

2. Compulsators

Compulsators (Compensated Pulsed Alternators) are low impedance alternators
which use flux compression to shape their discharge pulse and thereby increase their
peak power. These devices boast stored energy densities on the order of 19 kJ/kg as
opposed to 3 kJ/kg for capacitors and 4 kJ/kg for homopolar generators [7].
Compulsators were invented by CEM-UT engineers in 1978 [8] where they have
undergone considerable improvement and testing over the last 18 years. The key to
the compulsators ability to achieve such high energy densities lies within the large
kinetic energies stored in the spinning armature. Driven typically by small gas turbine

engines, current designs operate at upwards of 12,000 rpm with rotor tip speeds in

excess of 500 m/s.

Recent design improvements include the use of graphite fiber reinforced epoxy
composites for the manufacture of the armature rotors. These materials have enabled
engineers to manufacture rotors with demonstrated tip speeds as high as 1,200 m/s
[9]. Since the energy density of the rotors scales with the square of the tip speed,
advances such as this promise even greater improvements in the energy storage for a
given mass and consequently even further reduction in the overall weight and size of

compulsators.

The most recent product of CEM-UTs’ efforts is a 40 MJ, four pole, air core,
compulsator which is self excited and regenerates its field energy between each shot.
This compulsator was designed and built as a prototype to power the 30 mm rapid fire
gun mentioned in the introduction. This machine is an excellent example of how the
design of a compulsator can be tailored to match the load requirements of a specific
gun. Probability of hit analysis and overall system optimization studies determined that

the gun should be capable of firing 15 shots in three, five shot salvos. The shot rate

15




requirement was 300 rpm with a 2.5 second dwell between salvos. Based on system
integration and space constraint issues it was decided that the machine should store
enough energy to complete all 15 shots without having to reengage the prime mover

and spin back up.

The compulsator is linked to the prime mover via a slip clutch. During the first
100 ms of a shot, a capacitor is discharged into the field coil to provide the seed
current for the self excitation. At the end of this time when full field is achieved, the
gun fires with a discharge time of 2 ms. Over the next 90 ms, the excitation process is
reversed and the energy stored in the magnetic circuit of the gun is recovered as
useable kinetic energy in the rotor. During the main discharge when the torque
exceeds 400 ft-Ib the clutch slips thereby isolating the prime mover from the high
decelerating torque. When the discharge is complete the motor resynchronizes with
the rotor in 15 ms. Using this method, a small amount of energy is being added to the
rotor between shots in a salvo and between salvos. The 15 current pulses generated

during a full engagement are shown in Figure 5.

]
800 ~

700 —
600 —
500‘—f
400 —

300

Gun Current (kAmps)

Time (secs)

Figure 5. Gun and Compulsator current during an engagement [2].
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During the engagement, the peak current seen by the gun varies from 790 kA for
the first shot to 650 kA for the last sﬁot. Approximately 50% of the compulsators
energy is used during the fifteen shot engagement resulting in the rotor slowing to
about 70% of its original speed. Using a selective passive design [10] for the

compulsator resulted in the current pulse shape shown in Figure 6.

7.000 lOS T T T T

6.000 10° + .- N 4
\

5.000 10° 1+ / \ 4

4.00010° 4 . \ -

Amperes
~
rd

3.000 10° 4 / \ 4
2.000 10° 4- / \\ 4

1.00010°+ [ . \ 4

1.00010° t } t }
0 0.0005 0.001 0.0015 0.002 0.0025

Time (secs)

Figure 6. Current pulse generated using selective passive design [21.

This shape 'results in a peak to mean acceleration ratio of about 2, which keeps the

peak jerk experienced by the projectile package to a minimum.

The total weight of the 30 mm gun system is 2200 kg. The compulsator is about
70% of that amount and occupies approximately 1 m?® of space. By achieving
extremely high energy densities ahd tailoring the design of the compulsator to match
the load requirements of the gun, the total system package was kept within weight and
volume constraints specified for the Amphibious Assault Vehicle. This was one of the

first practical demonstrations of the ability to field an EM gun on a tactical platform.
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D. ARMATURE CONFIGURATION
1. SOLID ARMATURES

Whether they are of the solid or plasma type, the armature is probably the single
most critical component in the EM gun. It must conduct currents on the order of 0.5 to
5 MA and be able to withstand accelerations of up to 1 X 10’m/s2. Solid armatures
predominate in the research work done for weapons applications. Aluminum and
copper are the materials of choice due to their high electrical conductivity, ease of

machining and low cost.

In weapons applications, the armature usually serves as a means of accelerating
a penetrating rod sub-projectile, and, as such, is not a critical component of the
projectile package once it has left the barrel. This allows designers to treat the
armature as a sacrificial component and permits the use of materials that may erode,
ablate, or even completely vaporize as they conduct current during the shot. Attempts
to reduce the erosion of the rails of the barrel ( usually copper or molybdenum ), have

lead to aluminum alloys as the preferred material for solid armatures.

Maintaining physical contact between the solid armature and the rails of the gun
in order to prevent sporadic electrical arcing is critical. To achieve this, armatures
usually have a "bobtail" or "u-shape" geometry as shown in Figure 7. The flow of
current through this shape generates a magnetic force which tends to force the trailing
arms of the armature against the rails. Even with this type of design, most solid
armatures break physical contact with the rails and form an electrical arc at
approximately 1,500 - 2,000 m/s [11]. This may occur on one or both armature
surfaces and results in a substantial increase in the voltage drop across the gun. This
leads to reduced gun efficiency and greater electrical damage to the rails. Solid
armatures that operate in this regime are often referred to as transition or hybrid

armatures.
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Figure 7. Solid armature geometry.

As more work has been done with solid armatures in this transition area, the
term transition armature, has been changed to denote a solid armature design which is
experiencing arcing. On the other hand, hybrid armature now denotes a completely
separate type of armature design that attempts to promote the formation of an ionized
gas (plasma) between the armature surfaces and the rails at higher velocities. This
design helps to eliminate the uncontrolled arcing of the transitioning solid armature

and reduce rail pitting while increasing gun efficiency.

2. Plasma Armatures

For EM guns operating above 4 km/s the armatures are almost exclusively of the
plasma type. Plasma armatures are generated by placing a thin foil or small gauge
wire of copper or aluminum between the rails at the breech of the gun behind the

projectile. The initial surge of current vaporizes the material, which forms a conducting
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plasma cloud. Magnetic forces act on this cloud and compress it against the base of

the projectile package.

The voltage drop experienced across a plasma armature is considerably higher
than that for a solid design, typically 200 to 600 volts. This results in a large electrical
power dissipation loss and consequently damage to the rails and insulators from the
high temperatures (25,000 K) produced [11]. Attempts to minimize this effect include
initiating the plasma well behind the projectile [12]. This method allows the extremely
low mass plasma to rapidly accelerate before colliding with the projectile placed further
down the bore. This produces a slower current rise through the plasma armature

which results in less rail erosion near the breech of the gun.

The approach described above, and several others have been successful in
reducing the rail erosion experienced with plasma armatures in small laboratory EM
guns. None of them however, have been successfully scaled up to tactical weapons
type applications. Considerable work remains to be done before plasma armatures can

be used to boost projectile velocities beyond 4 km/s in tactical EM guns.

E. GUN AUGMENTATION

It is clear from equation (2.3) that the force generated in a rail gun can be
increased by either raising the current through it or by improving upon the inductance
of the gun barrel. Most early work concentrated on gains in current flow since the gain
scales as the square of the current. As the current carrying capacity of armatures
appears to have reached a peak, more attention is now focused on gains from

increasing the inductance of the barrel.

Augmentation generally refers to the addition of rails running parallel to the
primary rails. These rails carry current whose purpose is to increase the magnetic
field cutting through the bore. Figure 8 shows how a transaugmented rail gun
operates when the current in the augmenting rails is provided from a source separate

from that of the primary rails. In this case, the force exerted on the armature is still the
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Figure 8. Magnetic forces in a transaugmented railgun.

current in the armature multiplied by the average magnetic field at the armature.
However, the magnetic field is now one half the sum of the fields in front of and
behind the armature. This is because, unlike the magnetic fﬂield from the primary rails
which exists only behind the armature Bp, the field from the augmenting rails B,

exists the entire length of the bore regardless of the armature position.

If we express the force in terms of the inductance gradient of the rails as in
equation (2.3) with the mutual inductance gradient of the augmenting rails defined as

M, the force on the armature is now given by:
Frg = % LI+ Mipl, (2.23)

This shows that the force in an augmented railgun is the sum of the standard Lorentz
force and an additional force which is linearly proportional to the current in the

augmenting rails.

The simplest method of augmentation, shown in Figure 9, is to place the
augmenting rails in series with the primary rails such that the current in the primary

rails is the same as that in the augmenting rails Ip = 4. This type of augmentation
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SERIES

Figure 9. Series augmented railgun.

has been used in several laboratory and prototype railguns including the 30 mm gun
mentioned in the introduction. The series augmentation requires an approximately
60% lower current and thus higher voltage to achieve the same performance as a gun
with no augmentation [11]. As such, one advantage of this type of augmentation is to

provide better matching to high impedance power supplies.

A completely different type of augmentation involves the use of permanent
magnets to augment the magnetic field in the bore as shown in Figure 10. Much like
the effect of augmenting rails, the permanent magnets create a field for the entire
length of the bore for which they are installed. Once again, starting with equation

(2.3), the force on the armature is now:

Fra == * L'I? + BI"D, (2.24)

1
2
where B is the magnetic field generated by the magnets and D is the distance
between the rails. By using rare earth magnets, fields on the order of 1 to 2 Tesla can

be achieved without great difficulty. This type of augmentation provides substantial

acceleration forces when the current in the rails is still too small to generate significant
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Figure 10. Permanent magnet augmented railgun.
magnetic fields. The result is a gain in efficiency by taking advantage of the lower

currents present during the current pulse rise and decay periods as well as adding to

the magnetic field generated by the current in the rails during the rest of the pulse.
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Ill. TEST BED EM GUN

A. GUN DESIGN AND FABRICATION

The one meter electromagnetic (EM) railgun was designed and constructed to
serve as a test bed for research work in the field of EM acceleration as well as for
work in plasma effects, pulsed power, and hypervelocity impact. The largest constraint
imposed on the design and fabrication of the gun and its associated power supply was
cost. The entire budget was 1,200 dollars. This required the use of preexisting and
borrowed parts and materials wherever possible. The small budget constrained the
size and initial operational capability of the gun. It also forced the use of previously

untried methods and materials which are explained in the following discussion.

The test bed EM gun design had a 1/4" x 3/4" rectangular bore. This decision
was based upon a small scale gun that had been built previously. This small gun had
a 1/8" x 3/4" bore and was augmented by a row of rare earth (Neodymium Iron Boron)
magnets placed above and below the bore. It fired 3/64" thick, 3/4" diameter graphite
discs weighing 0.5 g and was powered by a small bank of 330 volt photoflash
capacitors. The large gun was envisioned as a scaled up version of the smaller
model, initially using the same augmentation method and projectile material. The
length of the gun was determined from several calculations using equation (2.24). For
the expected projectile masses of 1-5 g, one meter would be adequate to accelerate to
velocities up to 3000 m/s, given a large enough power supply. Just as important was
the fact that the longest 1/4" thick, copper bar stock to be found in the Physics
Departments store room was 40". For ease of fabrication and because it was

available, the body of the gun was manufactured out of Phenolic.

The basic design was a clamshell consisting of two blocks of phenolic each 40"
long, 1.375" thick and 3.5" wide. Each block had a 2.25" wide channel cut 3/16" deep

running the length of the block to accept the copper rails and a pair of 1/16" phenolic
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sheets. As shown in Figure 11, the two phenolic blocks where secured with bolts

- which ran through the rails and had a breech block secured to one end.

Figure 11. One meter railgun design.

The permanent magnets where 3/4" wide by 1/2" thick and were to run the length of
the barrel both above and below the bore. Unfortunately, the cost of the 64 magnets
required for the augmentation was approximately 450 dollars and as such were not
procured for the initial operation of the gun. Space was also left to the outside of each

rail to allow for the addition of augmenting rails in the future.
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A 1/4", low pressure, air fitting was attached at the breech block to allow for
initial acceleration of the projectile by means of a compressed gas charge. Plexiglass
windows were placed above and below the bore at a point 4" from the breech. An IR
source was used as a means to trigger the current pulse from the power supply as the
projectile passed. This method was used to ensure that the projectile was far enough
from the breech to eliminate any influence from anomalies in the magnetic field near
the end of the rails. It also guaranteed that the projectile would be moving when the
current pulse was initiated so that the power supply would not have to overcome the

rest inertia of the projectile.

Electrical connection to the rails was made through four, 1/2" threaded copper
studs which passed through holes in the upper phenolic block. One pair of these
studs threaded into the breech end of each rail. Plates of 1/4" copper were bolted to
each pair of studs where they protruded from the top of the gun and served as
connection points for the power cables. Cabling between the gun and each terminal of
the power supply consisted of a pair of 2/0 welding cables sheathed with high

pressure plastic tubing for additional high voltage protection.

B. POWER SUPPLY

The foundation of the power supply was four, 100 pF, 10 kV, high energy
capacitors which were left over from a previous, unrelated, experiment. Their 20 kJ of
energy at full charge was far short of the 100 - 150 kJ which could be used by the one
meter gun. However, as they were "free", the power supply was built around them,
but with adequate excess capability should larger capacitors become available in the
future. The capacitors were configured in parallel with thick copper bus bars and
mounted in a moveable wooden cart. The top of the cart was used for the layout of
both the capacitor charging circuitry and the trigger pulse generator and trigger switch

components.
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The electrical schematic for the power supply and the current pulse transformer

is shown in Figure 12.
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Figure 12. Power supply schematic.

The most unique component of the power supply is the TVS-40 vacuum switch. This
device, of Soviet design and construction, was obtained through Maxwell Labs. It has
the ability to transfer 100 Coulombs of charge in a single firing at up to 20 kV and 100
kA [13]. This type of switch was chosen over ignitrons and SCRs because of its

simplicity, durability, small size, and most importantly, low cost.

The majority of the components in the power supply are dedicated to generating
the 2 kV, 1 kA, pulse used to trigger the TVS-40. This was done with an 80 uF, 2 kV
capacitor which was discharged via a high current SCR into a homemade transformer
which then provided a pulse to trigger the switch. The switch optimally requires a 5
kV, 1 kA, 2 us pulse. However, ftsr the modest discharge passed through the switch

by the 20 kJ capacitor bank, the smaller, faster pulse generated here was more than
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adequate.

C. CURRENT TRANSFORMER

The estimated discharge time for the power supply firing into the gun load was
100 ps. With this dischérge time, even at full charge, the capacitor banks’ 4 coulombs
of charge would only generate an average discharge current pulse of 40 kA. Without
the permanent magnet augmentation, this current would have been inadequate to
generate any significant force on the armature. It was determined that the best
solution would be to manufacture a step up current transformer, assuming that it could

be done for less than about 100 dollars.

The transformer was modeled after a prototype designed and manufactured by
Pappas, Driga, and Weldon in a collaboration between the U. S. Army Armament
Research and Development Center and CEM-UT. Presented in [6], their design was a
coaxial, air core, pulse transformer envisioned for use in matching high impedance
capacitor bank power supplies to low impedance railgun loads. The design seemed
an ideal solution to our low current dilemma and a scaled down version was

constructed.

The secondary was fabricated from 3/4" ID soft copper tubing. This tubing was
bent into a five turn coil around an 19'; diameter form. The coil was then cut axially on
one side to form five individual helical loops. The loops were electrically paraliel
connected to two large copper bus bars by soft soldering them into threaded female
plumbing fittings which had been screwed into threaded holes in the bus bars. The two
bus bars were then clamped together with phenolic blocks after a phenolic insulating
plate with holes matching those in the bus bars had been placed between them. This
then constituted a single turn primary made up of five loops arranged to form a five

turn helical path for the primary.

The primary was made from a 30 foot section of large gauge coaxial cable. The

outer layer of insulation and the braided copper sheath were stripped away leaving
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only the 3/16" diameter inner conductor and its thick plastic insulation. The outer
diameter of this remaining cable was just small enough to fit through the 3/4" ID
copper tubing of the secondary. With a bit of effort, this 30 feet of primary was

threaded through the secondary, completing the transformer, as shown in Figure 13.
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Figure 13. Coaxial, air core, current transformer [6].

The coupling efficiency k, of this type of design was determined by Sadedin in ref [14],

to be given by:

(3.1)

where r, and r; are the radii of the outer and inner conductors, R and / are the radius
and length of the transformer, and N is the number of turns. For the 19" diameter,

five tumn transformer, equation (3.1) predicted a coupling efficiency of 91%. With the
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estimated 40 kA, 10 kV input of the power supply, the transformer would then provide

a nominal 200 kA, 2 kV, 100 us pulse to the gun.

Three aluminum braces were added to the transformer axially at 90° intervals to
stiffen the structure against the magnetic forces it would experience. Twisted pairs of
solid 3/0 cable were used to connect the secondary input and output to the gun and
the 2/0 welding cable pairs from the power supply were attached to the ends of the
primary. The unit was then mounted in a wooden cart, on top of which the gun was

placed.
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IV. INITIAL OPERATIONAL PERFORMANCE

A. ELECTRICAL PERFORMANCE TESTS

The power supply was put through a series of test firings in an attempt to
determine its inherent inductance, judge the performance of the TVS-40 switch, and
assess the robustness of the design. Initial test firings were performed without the
current transformer connected. A six inch square, twelve inch long, block of graphite,
was used as a dummy load. The graphite block was sandwiched between two 1/4"
plates of copper and had a measured resistance of 0.93 mohms. The output cable of
the power supply was passed through a ferrite toroid which had a three turn loop
attached around it. The output of the toroid was connected to a Tektronix 602A

Digitizing Signal Analyzer via a shielded coaxial cable with a 40 dB inline attenuator

and recorded the temporal derivative of the current, —%, during the discharge.

The first series of firings were conducted with low voltages on the capacitor bank
(2-3 kV ) and served to check the electrical continuity of the system and the ability of
the trigger circuit to successfully fire the TVS-40. The TVS-40 proved to be extremely
reliable and operated well even when transferring pulses of less than a Coulomb. As
the test firings approached capacitor voltages of 5 kV there was considerable flexing of
the power supply cables and above 7 kV some of the cable terminations failed. The
cables were reterminated with four mechanical connectors in series for each
connection. The power supply was then tested up to a full 10 kV without any
problems. The ferrite toroid used for recording the changes in current during the
discharge was placed around the output cables of the power supply just downstream

from the TVS-40 switch.

The traces shown in Figure 14, were obtained by discharging the power supply,

with a capacitor bank charge of 5kV, through the dummy load. The first trace
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Figure 14. Power supply discharges at 5 kV capacitor voltage .

indicates a very rapid current rise time on the order of 2.5 us. The compressed time
scale of the second trace shows a current drop off over the same time scale as the
rise and a total pulse duration of approximately 100 ps. The only known inductance of
the power supply was the 40 nH of each of the capacitors. This was not near enough
to account for the 200 Hs ringing observed during the dummy load tests. This ringing
period indicates that the total inductance of the power supply is 2.8 uH, the majority of

which comes from the geometry of the connecting cables.

To further characterize the nature of the power supplies discharge, a voltage
divider was installed across the vacuum switch and monitored during another series of

dummy load firings. Of interest here, was the time required for the capacitors to drop
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from their charge voltage to zero. This voltage drop time would provide an empirical
method of measuring the average current generated during the initial voltage drop.

Figure 15 shows a trace of the capacitors voltage as the power supply was discharged

from 5 kV into the dummy load.

~1ovk : : : : : : : . : :
~8us 18@us/div . 992us

Figure 15. Switch voltage during a 5 kv discharge.

This trace confirms the 200 us ring time observed during the previous tests and shows

an initial voltage drop time on the order of 25-30 us.

The power supply was next connected to the current transformer and the same
dummy load was placed between the leads of its secondary. A similar series of
graduated voltage firings was conducted up to a full 10 kV with no problems noted

except for the generation of some rather large magnetic fields. For this set of tests,

35




the first toroid was left in place and a second was placed around the output cable of
~ the transformer's secondary. The traces shown in Figure 16 were again obtained from
discharges conducted with a capacitor bank charge of 5 kV. The first is the output of

the power supply and the second is the output of the current transformer.

24.9975v 24,9975V

fnot! fnot!
trigd trigd
C1 C1

-25. 082V + ——— 25 BB2V— + '
-1us S@8ns/div:: [FT -1zs 586ns/div  [RT] dps

Figure 16. Power supply and transformer output at 5 kV.

The power supply’s output shows a decrease in the rate of current rise as
compared to that without the transformer in the circuit. This is probably due to the
increase in the overall inductance of the circuit with the transformer installed. The
calculated inductance of the transformer is 22.6 uH and is the dominant inductance of
the circuit. The time period of the current pulse with the transformer in line was

measured at 280 p sec. From 1 =2aVLC, the actual inductance for the circuit is 19.8
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puH which is only 12% less than the calculated value. This series of tests, both with
and without the current transformer in the circuit successfully demonstrated the
robustness of the power supply and its components including the TVS-40. The only
unexpected result was the apparent ringing of the capacitor bank through the TVS-40
switch. It is not clear if this is a failure of the TVS-40 to properly rectify the circuit or if
the switch is being retriggered by oscillatory fields generated within other components

of the power supply.

B. FIRING WITH CURRENT TRANSFORMER

The first ten test firings were conducted with disk shaped graphite projectiles at a
capacitor bank charge of 5 kV (5 kJ). The magnetic field generated by the current
transformer interfered with the chronograph which was being used to measure
projectile velocities. Several different attempts to shield the device were unsuccessful
and no reliable velocities were recorded. Additionally, each firing left a heavy residue
of soot in the first few centimeters of the bore. This soot, which obscured the

plexiglass windows used for the IR trigger had to be cleaned away between each shot.

The graphite projectiles had a close tolerance fit between the rails but had a
loose fit vertically in the bore. It appeared that as the initial surge of current passed
through the graphite, a plasma of ablated graphite would form and take over as the
path for the current flow. At this point the low mass plasma cloud would be rapidly
accelerated and "blow by" the projectile which would be left to coast down the bore
from the force of its initial acceleration. This correlated with the visual observations of
the firings which were characterized by a hypervelocity plasma jet exiting the bore

followed by a low velocity (~100 m/s) projectile.

In an attempt to prevent the plasma blow by and to strengthen the rails the
configuration of the gun was modified. A new, wider, pair of copper rails were
fabricated which reduced the previously 3/4" wide rectangular bore to a 1/4" square

bore. The channels in the phenolic blocks of the gun were deepened and the 1/16"
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phenolic bore sheets were replaced with 1/8" thick sheets of teflon. Finally, the IB
sensor method of triggering the power subply was abandoned as the accumulated
soot and damage to the plexiglass windows rendered them unserviceable. The new
method of triggering the power supply was through an adjustable time delay which
was set to initiate the current pulse 25 msecs after the compressed gas charge was

applied to the breech.

The first p_rojectiles/armatures fired with this new configuration were simply 1/4"
square, 1/2" long pieces of graphite machined to a 0.003" fit in the bore. With the 100
psi compressed gas initiation and a 25 msec delay, current flow initiated after
approximately 2-3 inches of armature travel. Several shots were fired ranging from 5
kV to 7 kV of capacitor voltage. Unfortunately the velocities recorded by the
chronograph were still erratic and indicated continued interference from the magnetic
fields generated by the current transformer. The velocities appeared to be greatly
improved over those from the previous gun configuration as the armatures were now
penetrating several centimeters into a phone book which was being used as a
backstop. However, the inability to accurately record projectile velocities led to the

decision to disconnect the current transformer from the circuit.

C. FIRING WITHOUT CURRENT TRANSFORMER

With the Current transformer removed from the circuit, the power supply’s cables
were connected directly to the rails of the gun. The first shot was conducted at 5 kV
charge with a graphite armature/projectile. The shot was very loud in comparison to
those using the transformer. A velocity of 1200 m/s was recorded by the chronograph
and the graphite embedded itself in the backstop. Upon examination of the gun, it
was discovered that the rails had been bowed outward approximately 1/16" each in
the area where current flow initiated. The rails were straightened, honed and reset in
the gun, but this time shims were installed on the back side of the rails to prevent the

possibility of further bending.
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At this point, enough data had been gathered on the characteristics of the
graphite armatures to indicate that they were not reducing the amount of erosion
damage to the rails in comparison to aluminum as had been the case in the smaller,
lower voltage gun. Several solid armatures were manufactured from both 6061 and
7075 aluminum alloys and fired from the gun at voltages from 5 kV to 10 kV. All of the
armatures experienced severe erosion and on average lost approximately half of their
mass during the shot. An assortment of the recovered armatures are shown in Figure

17, next to similar unfired armatures.

Figure 17. Fired and unfired aluminum armature pairs.

A typical 1 gram armature fired at a charge voltage of 10 kV achieved a velocity of
2,050 to 2,150 m/s and had a residual mass of approximately 0.60 grams. For these
typical shots, the guns efficiency at converting the capacitor banks 20 kJ of stored

energy into kinetic energy of the remaining armature mass was approximately 6.5%.
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The significant reduction in the dimensions of the armatures made it apparent
that these armatures were probably experiencing some degree of plasma blow-by
towards the end of the current pulse. This lead to the manufacture of several
projectiles which consisted of an aluminum armature attached to a block of nylon
which contained a steel rod. As shown in Figure 18, the steel rod was 0.75" long,
0.18" in diameter and weighed 2 grams. The nylon sabot weighed 0.25 grams and
served to electrically insulate the steel projectile and to prevent plasma blow-by of the
aluminum armature. The armatures were made of 7075 aluminum and weighed 1

gram for a total projectile package weight of 3.25 grams.
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Figure 18. Two gram steel rod sub-projectile with nylon sabot and aluminum ar-

mature.

The first of these projectiles was fired at a power supply voltage of 12 kV. The

steel rod passed cleanly through a 3" thick telephone book and was stopped by a .

steel plate backstop. The remaining 0.43 gram aluminum armature and several small
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slivers of nylon were found lodged in the phone book. The measured velocity of the
projectile was 1,973 m/s. For this firing, considering only the kinetic energy of the
steel sub-projectile, the guns efficiency was 15%. The higher efficiency is attributed
for the most part to the sabots ability to seal the bore and thereby contain the plasma
generated by the solid armature as it transitioned. The firings were discontinued at
this point due to the failure of the thyristor used to generate the pulses which triggered

the TVS-40.
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V. CONCLUSION

A One Meter Electromagnetic Railgun hasA been designed, constructed and
successfully operated. Initial firings have acceleréted a two gram sub-projectile to a
muzzel velocity of nearly 2 kilometers per second with an overall efficiency of 15%. In
the process, this work has demonstrated several important points. First, the
understanding of the electromagnetic theory and the modeling of its behavior in these
devices has reached a high level _of maturity and should predict the behavior of a
given design. The higher than expected velocities and efficiencies achieved with this
gun are possibly due to the unanticipated ringing of the capacitor bank through the
vacuum switch. This appears to have resulted in several large, short, current pulses

which sequentially accelerated the projectile.

Secondly, the instrumentation of this type of device is critical, and as such needs
to be an integral part of the design vice an after the fact add on. The present
instrumentation of the test bed gun is inadequate to accurately and fully measure and
record its electrical and mechanical characteristics. Unfortunately the cost of the
instrumentation required may be far greater than that of the gun and power supply.
This brings to light the last and perhaps most important point. Electromagnetic guns
are inherently simple and inexpensive devices. Aside from thé rather complex
components presently required to trigger the large current discharges, the gun and
power supply are just a basic, albeit large, LRC circuit. With further advances in high
power SCR design and high density electrical energy storage devices, the complexity

and cost of these guns should continue to decrease.

Areas of additional study with the one meter gun include the instrumentation of
the gun to capture the actual current pulse generated by the power supply. With this
ability, the nature of the discharge could be better characterized. This information
could then be used to evaluate the affect of the current transformer on the circuit and

its ability, if any, to improve the performance of the gun.
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